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The linear stability of the Stewartson layer in a compressible fluid is studied. The 
viscosity and the heat conductivity are shown to be negligible for a special kind of 
infinitesimal disturbance. The basic equations of the disturbance are shown to reduce 
to those for a Boussinesq fluid subject to a virtual radial stratification. A Miles-type 
sufficient condition for stability and a Howard-type semicircle theorem are derived. 
The growth rates of unstable modes with wavenumber and shear strength are sum- 
marized in stability diagrams for typical cases. The results clarify the situation in 
which the stability of the Stewartson layer is governed by a balance between the shear 
strength and the temperature st,ratification in the layer. 

1. Introduction and summary 
Let us consider a compressible fluid which fills a rotating cylinder. The cylinder is 

divided into inner and outer parts by infinitesimal gaps at a certain radius in the end 
plates. The inner and outer parts of the end plates rotate with different angular 
velocities. The difference in the angular velocities is small with respect to their average. 
This is a situation in which a vertical Stewartson layer appears as is shown schemati- 
cally in figure 1 (Stewartson 1957). What is the stability of this Stewartson layer? 
What kind of new effects arise owing to the compressibility of the fluid? This is the 
problem which we want to discuss in this paper. 

For the incompressible case, an experimental study of Stewartson-layer instability 
was performed by Hide & Titman (1967). Theoretical work was done by Busse (1968), 
Siegmann (1974) and Hashimoto (1976). As far as the author is aware, however, 
compressible cases have not yet been studied. Studies of compressible cases are 
important not only in themselves but also in relation to gas centrifuges used for the 
enrichment of uranium. 

Before starting the discussion of our stability problem, we summarize physically 
important aspects of our problem. In the incompressible case, the main bodies of 
fluid bounded by the inner and outer parts of the cylinder end plates rotate rigidly 
with these respective parts. The jump in the angular velocity is smoothed out by an 
outer layer of thickness ES, where E is the Ekman number [defined in equation (2.3)]. 
The structure of this layer is determined by its Ekman extensions on the end plates. 
The inner layer is of thickness E l  and plays the role of rechannelling secondary 
meridional circulation in the outer layer. The main features of these properties do not 
change in the compressible case (Matsuda & Hashimoto 1976, 1978; Matsuda & 
Takeda 1978). Expansions and contractions of the fluid particles along with their 
meridional motions cause the absorption or release of heat. This affects not only the 
temperature and the angular velocity but also the meridional circulation itself. The 
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FIGURE 1. Schematic representation of the Stewartson layer and its Ekman extensions. 

angular velocity is linearly correlated with the temperature by a thermal-wind 
relation. This reflects a dynamical balance between the Coriolis and the centrifugal 
forces. The meridional component of the velocity in the outer layer, however, is 
infinitesimally small in comparison with the azimuthal component (our frame of 
reference is a rotating system of co-ordinates with the mean angular velocity of the 
cylinder). Furthermore, if we restrict ourselves to the case in which the thickness of 
the outer layer is infinitesimally small in comparison with the radial scale height, the 
induced pressure is infinitesimal in comparison with the induced temperature and 
density. In  the analysis of the instability of the outer layer, therefore, we neglect the 
effects of these small quantities. The inner layer is of negligibly small thickness in 
comparison with the outer layer and plays the minor role of rechannelling the secondary 
meridional circulation. The inner layer can be treated as a thin interface. Because the 
main configuration of the outer layer does not depend on the axial co-ordinate, the 
above restrictions reduce the outer Stewartson layer to a one-dimensional stratified 
shear layer subject to the centrifugal force field. The stratification is decomposed 
into two components : the background component, which corresponds to the density 
stratification related to the basic rigid-body rotation, and the induced component, 
which comes from the shear via the thermal-wind relation. The background component 
has a stabilizing effect. The induced component has a stabilizing or destabilizing effect 
according to whether the induced temperature decreases or increases in the radial 
direction. Because the centrifugal force plays the role of gravity in our problem, this 
trend can be understood as a Rayleigh-Taylor type of instability. 

Our results are summarized in figures 2-4. The parameter /? in these figures is a 
measure of the shear strength. A positive (negative) /? represents a monotonic increase 
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FIGURE 2. Stability diagram for a case with Q1 = Qz = 1. The hatched region is the 

stable region corresponding to (3.4). The dashed lines are not neutral curves. 

10 

A 2  5 

0 
- 10 - 5  0 5 10 

B 
FIGURE 3. Stttkility diagram for a case with Q1 = 1 and QZ = 0. Notation as in figure 2. 

(decrease) in the azimuthal velocity in the radial direction. The parameter Q1 is a 
measure of the basic density gradient and /3Q2 is a measure of the induced temperature 
gradient. From the thermal-wind relation, a positive (negative) /3 corresponds to an 
induced temperature stratification which is statically stable (unstable). On the left 
halves of figures 2 and 3, the effects of the induced temperature stratification and the 
shear co-operate with each other to induce instability. Thus no stable islands appear 
in these unstable halves. The penetration of the stable region into these left halves 
is ascribed to the stabilizing effects of the basic density stratification. On the right 
halves of figures 2 and 3, the stabilizing effect of the induced temperature stratification 
counteracts the destabilizing effect of the shear. The former is assisted by the stabilizing 
effect of the basic density stratification and causes wide extension of the stable region 
in the right halve3 of these figures. As the absolute value of /3 increases, both of the 
above effects increase. If the Prandtl number of the gas is sufficiently small, however, 
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FIGURE 4. Magnification of the part 0 d d 10 and 0 d he d 0.1 of figure 3. 

the increase in the destabilizing effect of the shear overwhelms that in the stabilizing 
effect of the induced temperature stratification. Thus an unstable island appears a t  
the far right in the right half of figure 3 (this part is shown magnified in figure 4). 

I n  $2 ,  we discuss the basic equations. In  5 3, we derive a Miles-type sufficient con- 
dition for stability and a Howard-type semicircle theorem. In Q 4, we give the method 
of solution of the eigenvalue problem. 

2. Basic equations 
Let us start from rigid-body rotation of a gas with uniform temperature To, which 

is confined in a cylinder. The cylinder is of height 2H and rotates around a vertical ( 2 )  

axis with angular velocity Q. If there exist narrow gaps at  a radius L in each end 
plate and the inner and outer parts of the cylinder rotate with angular velocity 
!2 T +AQ, respectively, a Stewartson layer appears to smooth out the jump in the 
angular velocity (see figure 1). Because of the coupling between the thermodynamical 
and dynamical quantities, it is difficult to obtain the overall solutions even in the 
simple configuration shown in figure 1. However, Matsuda & Hashimoto (1976, 1978) 
and Matsuda & Takeda (1978) showed that the outer Stewartson layer of thickness 
Ea has a structure similar to that in an incompressible fluid. As the unperturbed 
state of the gas, we take the Ea-layer configuration superposed on a basic state of 
rigid-body rotation: we introduce a rotating system of cylindrical co-ordinates 
(r,  8, z )  which rotates around the z axis. The angular velocity of the system is SZ and 
the origin of the system is the mid-point of the z axis. The unperturbed state, in this 
rotating system, is 

- 

(2.1) 
T,= 1+RoT, ~ , = s B ( l + R o p ) ,  P , = E  1 
u, = zc, 21, = v, w, = w, B( + R 0 p ) 7 1  - 

where sB = exp (+GOT2), Go = Q2H2/RTo, R, = IAQl/SZ, 
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suffixes u and B refer to the unperturbed and to the basic state, respectively, and bars 
refer to the Ef-layer. The solutions corresponding to the Ea-layer were given by 
Matsusa & Hashimoto. These are 

- r - 1  - 
T = - -  roPrV, p = - T ,  G=asgn(q)(l-e-"l'11), (2.2 a -c )  2r 

5 = O(EB), W = O(E)), 2, = O(Ei), (2.2d-f) 

y = (r-ro)E-*, a = exp(&Gor2) l + - P r G , $  , ( 'il )'} (2.3) 
where 

E = v /H2Q,  Pr = v / K .  

In  the above equations we use non-dimensional quantities in which the temperature 
T is non-dimensionalized by the uniform temperature To of the basic state, the density 
p and the pressure p by their respective values at the origin, both the radial and the 
axial co-ordinate r and z by the half-distance H between the end plates and the 
velocity (U, V, G) by JAQIH/Go. The quantity 7 is a stretched radial co-ordinate in the 
Ef-layer, ro the non-dimensional radius of the Ei-layer, the ratio of the specific heats, 
v the kinematic viscosity, K the thermometric conductivity and R the gas constant. 
The non-dimensional parameters Go, Pr and E are the Mach number squared, the 
Prandtl number and the Ekman number. Because our system rotates rapidly, Go is 
of order unity and E and R, are infinitesimally small. The Prandtl number is of order 
unity. The parameter a is a measure of the shear strength in the Ef-layer. 

Let us consider small disturbances v'(u', v', w'), p', p' and T' to the unperturbed 
state V(2, V, W), p,, p u  and T,. The linearized basic equations of the disturbances are 

(2 .4)  $9 s at +V . V + F .  V + R , { ~ F .  v + p ~ .  v+ v .pv+ v .pv} = 0, 

1 + R  -av R 2- + A { ( T . V )  v+ ( v . V ) 7 } + 2 k  x v + 2 R 0 k  x ( p v + p ? ) +  G ,pk  s at G, 
x (k  x r) = -pF - Vp + (E/eB)  {6V( V . v)  + A v } ,  (2 .6 )  

k%?g +%{(V . V )  T+ (v  . V ) T }  s at G, " 
+-{V r - 1  . V +  Ro(pV. V + p V .  v)} = -AT, I'E (2.6) Go Pr eB 

r , = P + T ,  (2 .7)  
where F = (G,r, 0, 0 ) ,  k = (0, 0 , l )  and S is 8 time scaling factor to be determined later. 
I n  the above equations, primes are omitted for the sake of simplicity. We neglect terms 
of second order with respect to the disturbances and the Rossby number. Because 
disturbances which are trapped within the E*-layer are expected to be the most 
unstable, we restrict ourselves .to this layer. Correspondingly, we introduce the 
following variables: 

(2.8) 
In  accordance with this change of variables, we expand the physical disturbance 

z = ay = g(r-r,,) E-f (--00 < x < a), y = roe (0 G y < 2nr,). 
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The most important point in our analysis is our assumption that S = E-a and R, is 
of order Ef.  Because of this assumption, the Coriolis force terms, the cross-interaction 
terms between disturbances and unperturbed configurations, and the inertia terms all 
become of comparable magnitude. Note that the present time scale l/QEa is much 
greater than the local Brunt-Vaisalii frequency l /Qr ,  Gi  of the basic density stratifica- 
tion. With the above choice of parameters, the relevant set of the equations for the - 

disturbances is 
au, avo aw, 
ax ay a Z  

IT-+-+-= 0, (2.10) 

2 ~ ,  + ro cop, = ap,/ax, (2.11) 

(2.12) 

(2.13) 

p, + To = 0. (2.15) 

To derive these equations, we used the fact that u, = 0 and po  = 0. This follows 
directly from the zeroth-order continuity equation and the radial component of the 
momentum equation. In  the derivation of the third term of the energy equation 
(2.14), we have used the second-order continuity equation. It is interesting that the 
effects of viscosity and thermal conductivity on the disturbances disappear from our 
basic equations (2.10)-(2.15). 

To clarify the meaning of the above ordering, we consider other orderings of the 
parameters R, and 8. When R, < O(Ea), the cross-interactions of the disturbances 
with the unperturbed configuration disappear. The resulting equations reduce to 
those of inertial waves in a rotating gas. To examine cases in which R, > O(Ei), let 
us assume that R, = O(E*). In  this case, we can take 6 - E-*. The resulting equations 
reduce to a special case of our basic equations in which the Coriolis force term and the 
pressure term in (2.12), the pressure term in (2.13) and the term -(I?- l)roul in 
(2.14) are absent. 

Eliminating all variables except u1 from (2.10)-(2.15) and applying a single-mode 
analysis in which u1 is assumed to be of the form 

u1 = Re [ V(x) exp {i(my + nz - w t ) ) ] ,  (2.16) 

we obtain a single differential equation 

(2.17) 
where P = uaR,/G, Ef ,  C = C, + iCi = uw/m, h2 = n2/m2, ] 

r-1 r-1 
= TGor& Q2 = 

(2.18) 

and = sgn (x) ( 1  - e-Iz1), = ( - aQ,/G, r,) 7. (2.19), (2.20) 
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For the sake of convenience, let us divide our x space into positive and negative parts 
and denote the corresponding U ( x )  by U+(x) and U-(x). Here U+(x) and U-(x) tend to 
zero at plus and minus infinity respectively. Because the disturbances are inviscid and 
non-conducting, the matching conditions at  x = 0 are that u1 and p ,  are continuous: 

U+(O) = UJO), Uk(0 )  = U’(0). (2.21) 

A search for non-trivial solutions U,(x) subject to  these conditions constitutes an 
eigenvalue problem. 

Equation (2.17) is formally the same as that of small disturbances on a shear flow 
/3V in a Boussinesq fluid in which the virtual density stratification p”(x) is given by 

(2.22) 
+ Q 1 ( 1 + A 2 ) + & 2 ( 1 + A 2 ) p ~ ,  dV 

where 6, H, and po are typical values of the velocity, the length scale and the density, 
respectively, and go is the virtual gravitational acceleration in the + x  direction. A 
situation in which dp/dx > 0 corresponds to a stable stratification. The first term on 
the right-hand side of (2 .22)  comes from the Coriolis force. The second term comes 
from the basic density stratification. The third term comes from the induced tem- 
perature Stratification in the Ei-layer, which is expressed in terms of /3V by the 
thermal-wind relation ( 2 . 2 ~ ) .  When ,8 > 0, i.e. when V increases monotonically with 
x, these three terms are all positive. This gives us a stable virtual stratification. If /3 
is fixed and A is increased, the flow becomes more stable. If A is fixed and p is increased, 
the virtual density gradient increases. At the same time, however, the shear becomes 
stronger. The stability in this case is determined by a balance between the destabilizing 
effect of the shear and the stabilizing effect of the virtual stratification. This leads to 
the appearance of an unstable island in the right half of figure 3. When c -2, the 
first term becomes negative in a neighbourhood of x = 0 and this region (in x space) 
expands as p decreases. The second term is positive irrespective of ,8. This corresponds 
to a stabilizing basic density stratification and is the cause of penetration of the stable 
region into the region of negative p. The third term is negative and its absolute value 
increases as 1/31 and h increases. Thus the flow becomes more unstable if /3 decreases 
a t  a fixed value of A. 

3. Derivation of Miles- and Howard-type theorems 
Following Howard’s (1961) proof of Miles’ (1961) theorem on the stability of 

heterogeneous shear flow, let us introduce a new variable G = (pv- C)-tUinto (2.17). 
Multiplying the resulting equation by the complex conjugate of G and integrating 
with respect to x, we obtain 

(pv - C) I G’I2 + gpr”1 GI2 - (17 - C*) 
L m r n  [ 

x [ - 4 ( / 3 V ’ ) 2 + 4 ~ 2 + ~ ~ ( 1  +~2)+(2h2+&~(i+h2))pP‘]  Ippci2] - dx = 0, (3.1) 

where C* denotes the complex conjugate of C and the primes denote differentiation 
with respect to x .  Because the solutions U+ decrease exponentially as 1x1 +co (Bee 
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5 4 for proof), the above integration converges for Ci =# 0. Taking the imaginary part 
of (3.1), weobtain 

CiJ [ ]@I2+ [ - $(/3r’)2+ 4h2+ Q1( 1 + A 2 )  
- w  

+ ( 2 P  + Q2( 1 + P)} pv’] l/3[cl] - d x =  0. (3.2) 

Therefore a sufficient condition for stability is 

-&(/3r‘)2+4A2+Q1(1 +h2)+{2h2+Q2(1 + P ) } P V ’  > 0. 

- *p2 + Q2( 1 +h2),8+ 6h2 + Q1( 1 + A 2 )  > 0. 

(3.3) 

(3.4) 

Noting that 0 ,< 7’ < 1, we can rewrite (3.3) as 

The region corresponding to (3.4) is hatched in the stability diagrams in figures 2-4. 

tion by the complex conjugate of F and integrating with respect to x, we obtain 
Let us next introduce F = ( P P  - C)-’U into (2.17). Multiplying the resulting equa- 

Im -(Pr-c)2 lP’)2+[4h2+&1(1 +h2)+{2h2+Q2(1 + A2))pr’J IP12dx = 0. (3.5) 
- w  

Taking the imaginary part of (3.5), we find 

This shows that C, must lie in the range ( -  IPI, 1/31) for an unstable mode (Ci > 0). 
Taking the real part of (3.5) and using (3.6) and the fact that lrl < 1, we obtain 

(C,“ + c; -p) j  IF’12dZ < - J- [4hL + Q1( 1 + A2) + (2A2 + Q2( 1 + P ) } / 3 V ’ ]  IP(2dz. 
- m  -a 

(3.7) 

This implies that c,2 + c: < p2, (3.8) 

provided that 
(3.9) 

This corresponds to Howard’s (1961) semicircle theorem. 

4. Method of solution 
Let us consider an eigenvalue problem in which an eigenvalue C is to be determined 

for a set of values of the parameters Q1, Q2, /3 and h2. The basic equation is (2.17) 
and the boundary conditions are the matching conditions (2.21) and conditions a t  
infinity. If we introduce a variable 5 = e x ,  the equation (2.17) for U- becomes 

(/3t-P-C)’ ( (2d2U. /d t2+gdU- /d [ )  
+ [ - P 2 ~ 2 + { P + C + 2 h 2 + Q 2 ( 1 + h 2 ) ) / 3 ~ + 4 h 2 + Q 1 ( 1 + h 2 ) ] U .  = 0. (4.1) 

We assume an asymptotic solution of the form 
m 
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Substituting (4.2) into (4.1) and equating coefficients of equal powers of 5, we find 

{(P+ CI2 (,u +j)2 + 4A2 + Q1( 1 + A2)}aj +P{ - 2(P+ C )  (,u +j - 
+/3+C+2A2+Q,(1 +A2)}aj-l+P2{(,u+j-2)2- 1}aj-2 = 0, (4.3) 

where a_, = a-2 = 0. The indicia1 equation for j  = 0 gives us 

(4.4) 

Iterative use of (4.3) shows that the coefficients aj  (j 2 1) can be expressed in terms of 
a,. Because of the linearity of (4.3), the resultant solution is of the form U- = u,D-. 
Equation (4.1) has a singular point a t  ts = 1 +C/P, so that the expression (4.2) does 
not converge a t  6 = 1 (z = 0) if < 1. To evaluate the values of U- and UY at 5 = 1, 
we start from the asymptotic expression (4.2) at a certain point 5, < lts1 and integrate 
(4.1) numerically by the Runge-Kutta-Gill method of quadrature. We calculate U+ 
in a similar manner. Again the solution is of the form U+ = a, g+. Now that we have 
obtained u+(O), o;(O), UJO) and 81_(0), wecanestimate U+(O) UL(0)  - U;(O) U-(0)for 
any complex value of C for a given set of values of the parameters A2, P, Q1 and Q2. 

We plot this estimate on the complex C plane. The domain in this C plane can be 
restricted by the semicircle theorem (3.8). The eigenvalue Cis determined by the value 
which satisfies the matching relation U+(O) UL(0) - U;(O) U-(O) = 0 and we can easily 
pick out the eigenvalues from the above plot. This procedure is analogous to that 
described by Hazel (1972). 

The author wishes to express his thanks to Professor Takeo Sakurai for his critical 
discussion of the manuscript. The numerical calculations were made by the FACOM 
230-75 a t  the data processing centre of Kyoto University. 
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